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Abstract- Endochronic constitutive equations have been derived for use in the description of rigid
plastic deformation in the finite strain range. The concepts of corotational rate, corotational integral
and plastic spin have been incorporated into the theory. The equations are then applied to describe
the deformation of metal tubes subjected to torsion. Several different loading conditions have been
considered. The theoretical results have been compared with the experimental data for three different
metals. Reasonable agreement between theory and experiment has been achieved.

I. INTRODUCTION

The stress-strain behavior of materials subjected to finite plastic deformation has been a
frequent subject of investigation in recent years. Significant progress has been made both
from the phenomenological and physical approaches. In this work, the phenomenological
approach is used by means of continuum mechanics and plasticity. It is believed that this
approach has its merit in solving complex problems with relatively simple equations as
compared to physical theories.

Most phenomenological theories are hinged on the concept of corotational rate. The
Jaumann rate was generally used until the publication of Nagtegaal and De Jong (1981).
These authors numerically evaluated the stress generated by simple shear using the Jaumann
rate of back stress in a model that uses the Prager (1955) linear kinematic hardening rule.
They found an oscillatory shear stress response to a monotonically increasing shear strain
which is physically impossible. This result triggered a series of investigations to look for
corotational stress rates appropriate for the description of metallic behavior in the finite
strain range. The criterion for judgment has been to define a corotational rate in com
bination with a set of constitutive equations so that the shear stress response to a mono
tonically increasing shear strain is not oscillatory.

This goal has been achieved by several investigators using several different definitions
of corotational rate. Some of the works are now cited. An earlier work of Dienes (1979)
uses a corotational rate, based on the work of Green and Naghdi (1965), which is defined
in terms of the rotation tensor from the polar decomposition of the deformation gradient.
Lee et al. (1983) define the corotational rate by the spin of a unit vector which is oriented
along a principal direction of the back stress. Sowerby and Chu (1984) assume that the
corotational stress rate is defined by the stretch tensor decomposed from the deformation
gradient. Dafalias (1984, 1985) defines the corotational rate by use of the plastic spin which
was originally suggested by Mandel (1973) and Kratochvil (1973). The latter authors
suggested that constitutive relations must be provided with a macroscopic formulation not
only for the plastic rate of deformation but also for the plastic spin. Dafalias (1984,
1985) uses the representation theorem for isotropic functions to provide explicit forms of
constitutive relation for the plastic spin. Aifantis (1987) chooses to compute the corotational
rate with respect to the stress spin corresponding to the material frame whose angular
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velocity coincides with that of stress. Most investigations cited are based on the multi
plicative decomposition by Lee (1969) who decomposed the deformation gradient tensor
into the elastic and the plastic parts. Since the elastic strain (yield stress divided by the
elastic modulus) is usually of the order of 10- 3 for metals, it is small and frequently
neglected.

Most theoretical investigators considered the case of loading only. Since information
related to unloading and reloading is not generally available, these cases are rarely studied
theoretically. However, they must be studied in order to verify a constitutive equation.
It is known that the loading curve is not sensitive to various types of constitutive equa
tions but the unloading curve is. Another area of concern is that most theoretical
analyses consider two dimensional shearing, either simple or pure shear. However, ex
periments of two dimensional shearing are almost impossible to conduct and investi
gators have compared their theoretical results to results of torsion tests. It is our opinion
that since the hoop stress is always zero in the torsion tests, this condition has to be enforced
when the two dimensional shearing problems are solved and used to simulate the torsion
tests. Thus, the boundary conditions of the material element of the theoretical analysis
should be carefully considered, which has not been done, however, by most theoretical
investigators.

The torsion test of a cylinder is a very convenient means of determining the strain
hardening characteristics of materials. However, it is not straightforward to determine the
shear stress-strain curve from the experimental torque versus angle of twist data. This
problem has been discussed by Wu et al. (1992). Other problems that we need to realize
are that torsion of solid cylindrical specimens is useful only for loading without unloading;
the axial effect depends significantly on the wall-thickness and gauge length of a tubular
specimen; and that a short specimen does not give rise to uniform stress or strain in the
gauge section. We need to consider these effects when the experimental results are used to
compare with the theoretical results. Some experimental results that are used in this study
are now cited. Swift (1947) tested several materials in pure torsion (shearing without
constraint in the axial direction) and observed axial extension in relation to shear strain
under cyclic loading. Bailey et al. (1972) tested llOO-aluminum in pure torsion and recorded
the stress-strain relation together with the tangential (hoop) strain. Hart and Chang (1983)
tested thin-walled tubes of purity nickel (Ni-200) in torsion with different amounts of axial
prestress. White et al. (1990) tested specimens in simple shear state (shearing with axial
ends fixed) and investigated the stress-strain response. Wu and Xu (1989, 1990) and Wu et
al. (1993, 1994b) investigated the deformational behavior of aluminum and stainless steel
subjected to torsion by use of long gaugelength specimens and an extensometer that they
built.

The concept of plastic spin will be used in the present work. This concept ofcorotational
rate with plastic spin was used by 1m and Atluri (1987) in a version of endochronic theory
to discuss finite deformation of metals. For an account of the endochronic theory of
plasticity, see Valanis (1980) and Wu and Yip (1981). 1m and Atluri (1987) derived the
governing equations by using the isoclinic configuration as the intermediate configuration
and the corresponding second Piola-Kirchhoff stress. In here, we obtain the governing
equations by using the concepts of corotational integrals and derivatives discussed by
Dafalias (1987). We use the Cauchy stress instead of the Kirchhoff stress used by 1m and
Atluri (1987). The use of the Cauchy stress is consistent with the finding of Wu et al.
(1994a) that the evolution rule of yield surface is very complicated if stress measures such
as the second Piola-Kirchhoff stress is used. We further express the plastic spin in terms of
the back stress and the rate of deformation and show that the obtained expression is
convenient in the applications considered. Even though the methods are different in the
derivation, the resulting equations are similar to those of 1m and Atluri (1987). However,
the present derivation seems to be more straightforward. We also mention that 1m and
Atluri (1987) considered the loading condition only, while complex loading/unloading!
reloading conditions are included in the present study. Our theoretical results will be
compared with the aforementioned experimental results. In obtaining the theoretical results,
we have enforced the requirement that the hoop stress be zero.
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2. CO ROTATIONAL DERIVATIVES AND INTEGRALS

Suppose that a flexible body moves in space. The triad of unit vectors of frame! that
rotates with the body coincides with that of the reference frame! at time zero. The two
sets of coordinates are related by

(1)

where :ty1 is the matrix of an orthogonal tensor, such that :ty1T:ty1 = !-
Note that in this writing, a vector is denoted by a letter with an underscored bar, and

a tensor is denoted by a letter with an underscored tilde. Then, the following transformation
laws apply

g =:ty1Tg

t = :ty1Tr:ty1 (2)

where g and t refer to the! frame and we may write the corotational derivatives for g and
r as

g= g-Qg (3)

*r = I-Qr+rQ (4)

where

Q=M:ty1T (5)

and a dot over a tensor denotes its material derivative. It is easy to show that

(6)

The expressions of (6) show that the corotational rate of r with respect to the reference
frame! is obtained by finding the material rate of t with respect to frame! and then
transporting the result back to the reference frame !.

It may be shown that the corotational rate is objective by considering a superposed
rigid body rotation g, such that :ty1' = g:ty1 and r = grgT. Therefore,

* *r = grgT. (7)

Let us now consider the integral <I>(I) of the second order objective tensor r [see
Goddard and Miller (1966), Dafalias (1987)] which is a function of t and t', i.e. r = r
(t, t'). In here t is the current time and t' is a dummy parameter of integration. Referring to
the corotational frame !, the integral is defined as:

with

(9)

Physically, the corotational integral first transfers the tensor r to the! frame to obtain t
and, after integration in the! frame, it transports the result back to the! frame. Note that
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I(t') is a special case ofI(t, t'). We now show that the corotational integral is objective by
considering a superposed rigid body rotation Q, such that JYI' = QJYI. In the eyes of the
observer attached to the ~' frame which has the-rotation g, the corotational integral is

<D'[1'l = M'(t{ LJYI'T (t')I'(t, t')JYI.(t') dt']M'T (t)

= g(t)JYI(t{LJYlT (t')gT (t')g(t')I(t, t')gT (t')g(t')JYI(t') dt']JYlT(t)gT (t)

= g(t)JYI (t)lLJYlT (t')I(t, t')JYI(t') dt']MT(t)gT (t)

= g(t) cD[IlgT(t). (10)

Equation (10) shows that the corotational integral cD[Il is objective.
We can now find the relation between the corotational derivative and the co~otational

integral. We show that the corotational integration of the corotational derivative I recovers
thepriginal tensor I, if I = I(t'). i.e. not a function of t. From (9), the corotational integral
of I is

(I I)

The first equation of (6) was used in the above derivation. Equation (11) demonstrates that
the corotational integral of a corotational rate of a tensor is the tensor itself. Therefore, the
corotational integral is the inverse operation of the corotational derivative.

3. THE PLASTIC SPIN

The concept of plastic spin has been used frequently in the recent literature related to
finite plastic deformation. It is the spin caused by plastic deformation. According to this
concept, a portion of the total spin W is absorbed by the plastic spin WP and the rest is
accommodated by a rigid body spin q] of the material macrostructure. Since we consider
rigid-plastic deformation in this paper, we write

(12)

and

(13)

where Q is the rate of deformation tensor and is the symmetric part of the velocity gradient
It, so that It = Q+ W. Equation (13) shows that the plastic part is the same as the total
rate of deformation, and the elastic part has been neglected.

According to Dafalias (1985), the plastic spin WP is a skew-symmetric isotropic func
tion of Q: and Q', where e: is the back stress tensor and Q' is the Cauchy stress tensor. The
representation theorem of Wang (1970) for isotropic functions has then been used to obtain
the following expression
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WP = '11 (~!Z - !Z~) + '12 (~2!Z - !Z~2) + '13 (~!Z2 - !Z2~) + '14 (~!Z~2 - 1<l;2 !Z~)

+ '15 (!Z~!Z2 - Q"2 ~Q") (14)

where '1/s are scalar functions of the isotropic invariants of Q" and z.
Since the rigid body spin of the material macrostructure is CfJ, we write the corotational

rate of the back stress as

(15)

4. THE ENDOCHRONIC THEORY

According to the endochronic theory of Valanis (1980) by assuming that the material
is plastically incompressible, we have the following constitutive equation for small defor
mation

(16)

In the above equation § is the deviatoric stress; f is the strain; fP = f -!ilG is the plastic
strain; G is the shear modulus; Sy = )2!y where !y is the initial yield stress in shear; l1(z)
is the kernel function; and z is the intrinsic time which is used to register histories of plastic
deformation. Equation (16) may be rewritten as

deP deP
(17)§-~ = Sy d: = SJ(z) ~

where

. d( ( p (18)j(z)=-=c- c-l)e- Z

dz

d(2 = dfP . dfP (19)

and

f de
P

(20)~ = 0 l1(z-z') d~' dz'.

The intrinsic time z is scaled by a function f(z) , so that another intrinsic time ( is defined
through (18). The intrinsic time ( is further defined in terms of the plastic strain by eqn (19)
so that (accumulates monotonically whenever plastic deformation occurs. The functionf(z)
has been shown to represent isotropic strain hardening and is referred to as the isotropic
hardening function. Parameter c specifies the saturated state and f3 the rate of approaching
the saturated state of isotropic hardening. The back stress ~, given by the integral in eqn
(20), specifies the position of the center of yield surface.

By using eqn (17), eqn (19) leads to

(21)

Thus, either
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d( ~ 0 and (~~;)- (~~;)-l = 0

d( = 0 and (~~;)- (~S~;)-l # O.

(22)

(23)

Equation (22) represents plastic deformation obeying the Mises yield criterion with com
bined isotropic-kinematic hardening, while eqn (23) represents the elastic state governed
by Hooke's law d~ = G d,€. Since the elastic state is inside of the yield surface, the second
expression in (23) is justified. Equation (22) is further written as

(24)

in which the meanings ofj(z) and ~ are readily visualized.
On the other hand, the expression for the plastic strain increment is

(25)

which is obtained from eqn (17) and may be regarded as the flow rule.
We see that starting with the integral form of eqn (16), the endochronic constitutive

equation is now written in the incremental form given by eqn (25), with the yield function
governed by eqn (24). Mathematically speaking, the integral and incremental forms are
equivalent provided that appropriate initial conditions are used.

We now extend the above model to the finite deformation range. To this end, eqns
(18) and (25) are written as :

(26)

(27)

Note that the constitutive eqn (27) is in incremental form; only the back stress ~ given by
(20) is in integral form. We extend expression (20) to the case oflarge deformation by use
of (9) and consider a second order tensor J1.(z, z')(.o/z'). In this expression, z # 0, since the
case of z = 0 corresponds to the elastic behavior. Then ~ is the corotational integral
<I> [J1.(z, z')(Q/z')] in the case of large deformation. It follows that

[
rz MT(z')DM(z') ]

~=M(z) J
o

J1.(z-z')- z-;- dz'MT(z). (28)

The integration in (28) is with respect to z' which is not t' as in (9). The intrinsic time z is
a monotonically increasing parameter and it does not change during elastic deformation or
rigid body rotation. In general, M(z) is not a unique function of z, because rotation may
continue even when z is not changing. This multivalued association of M(z) to z does not
invalidate the meaning of integral (28) as pointed out by Dafalias (1987).

For simplicity in the subsequent calculations, we consider

with
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Il(O) = III +1l2·

Then, eqn (28) becomes

where

and

[
rz MT(z')DM(z') J

rz:(2) = 1l2ryt(Z) Jo - t~ - dz' rytT (z).

Since Z is a tensor, we have from (2)

We then have the corotational rate of rz: given by (6) as

* ... T do: Ta = MaM = M ----'":: tM .- --- -dz-
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(29)

(30)

(31)

(32)

(33)

(34)

By use of (28) and differentiating the expression for Z= rytTrz:ryt and then substituting the
resulting expression into eqn (34), we find

(35)

.
~quation (35) is the evolution equation of the back stress in terms of the plastic strain rate
Q, the back stress rz: and the intrinsic time z. Note that eqn (35) is in incremental form,
except for rz:(2) which is represented by an integral in eqn (32). It will be shown in the next
section that in solving the problem of thin-walled tubes under torsion, this integral may be
integrated so that eqn (35) becomes a true incremental form.

By using a similar procedure as in eqn (14) and retaining only the first term for
simplicity, the plastic spin for this theory is written as

(36)

where C1is dimensionless and is a scalar function of the isotropic invariants of ~ and rz:; t
is the rate of intrinsic time; and fez) is given by eqn (18). Using the first expression of eqn
(18), eqn (36) becomes:



1086 H. C. Wu et al.

(37)

Equation (25) is used in the last two expressions, and the coefficient K is given by

(38)

The above expressions are consistent with the results of Dafalias (1985) using a different
theory. Equation (37) together with eqn (12) are substituted into eqn (35) when the
corotational rate is used in the calculation.

5. THIN-WALLED TUBE UNDER TORSION

In the consideration of thin-walled tubes under torsion in the large strain range, the
elastic strain is neglected, so that the condition of plastic incompressibility is represented
by

(39)

where Br denotes the strain rate in the radial direction; Bo denotes the strain rate in the
tangential direction; and Bz denotes the strain rate in the axial direction of the tube. The
shear strain 211 is related to the angle of twist per unit length qJ by

211 = rqJ (40)

in which r is the outer radius of the tube. The rate of deformation and spin tensors are
expressed as

["
0

z]Q= ~ Bo (41)

~

and

W~[~
0

~l0 (42)

-~

Equations (41) and (42) are now used to derive the explicit expressions for plastic spin and
back stress.

Let the back stress be symmetric so that

[

a rr 0

~ = 0 aoo

o aoz

(43)

Then, since Q and ~ are symmetric, we note that Q~ = (~Q)T. Therefore,
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o
o (44)

Equation (44) is substituted in eqn (37) to calculate the plastic spin VjP. On the other hand,
the rigid body spin Wis defined in eqn (12) as:

(45)

where

(46)

Since the tensor Z is symmetric and the tensor Wis antisymmetric, we have zw = - (WZ)T.
Therefore, in order to find explicit expressions for the corotational rate, we first find

o
- 2uyxoz

- w(!Xzz - !XIJIJ)

(47)

and then obtain the following expressions by combining (15) and (35)

. *z = WZ-ZW+Z

where, from (32),

(48)

(49)

In the last expression, it has been assumed that the corotational axes are parallel to the
reference axes, so that M = 1. This is indeed the case for the torsion problems under
consideration. The deformation is homogeneous and the angle of twist per unit length is
constant along the tube.

In the numerical calculation, we can define a tensor <,!l as

[

0 0

<,!l = Wdt = 0 0

o cD

(50)

in which the following expression has been determined by use of eqn (46)

Then, (48) reduces to

(51)
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(52)

The equations derived in this section can be used to describe the response of a thin
walled tube subjected to various combined axial-torsional loading conditions. Two special
cases are considered in the following.

(A) Torsion with axial prestress
Denoting the axial prestress by (Jz = (Je = constant, the stress tensor and the deviatoric

stress tensor are

-(Je

0 0
3

Q ~ [~
0

:<J
0 and 0

-(Je

(53)~= 3
r

r

0
2(Je

r
3

Note that the hoop stress (Je is zero due to symmetry. The constitutive equations are, from
eqns (27), (41), (43) and (53), written as

(Je

der
3 +lJ(rr

dz Sy

(Je

dee 3+lJ(ee

dz Sy

2(Je

dez
3-lJ(zz

dz Sy

d1] r-lJ(ez

dz Sy
(54)

The intrinsic time is then given from eqns (26) and (41) by

(55)

Therefore,

(56)

By use of eqn (39), eqn (56) reduces to

(57)

Substituting eqn (54) in eqn (57), we then obtain
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(58)

The" +" sign is for loading and" - " is for unloading.
To perform the numerical calculation of d~ by use of eqn (52), ~(2) must first be

determined. To obtain a~I~) from eqn (49), we use eqn (41) to get

(59)

In the last expression, the limits of integration are 1](0) = 0 and I](z) = 1]. Similarly, we
obtain the following components for ~(2) during loading:

Therefore, from eqns (50), (52), (59) and (60), we obtain the following equations:

dC,(rr = (Ill +1l2)dcr-I'larrdz+iI1l2Srdz

d:xoo = - 2aflz <D + (Ill + 1l2) dSfI- AI :Xoo dz + /.1 1l2S0 dz

d:Xn = 2aflz <D + (Ill + 1l2) dEz- I, I azz dz + )'1 1l2Sz dz

daflz = (:Xoo - :XzJ<D + (/ll + /l2) dl] - I, 1:X07 dz + /.1 /l21] dz

(60)

(61 )

with the initial conditions 1](0) = 0, siCO) = 0, and :x;/O) = O. Thus, in a step by step
calculation, we can use

z = Z+dZ

I] = I]+dl]. (62)

Finally, we note that for the case of pure torsion, the ends of the specimen are totally
unconstrained with (Ie = O. Thus, the equations for pure torsion may be obtained by setting
(Ie = 0 in the equations of this subsection.

(B) Simple torsion
In the case of simple torsion, the ends of the tube are fixed so that i;z = O. Assuming

incompressibility, we find from (39) that 80 = -i;r =1= O. Hence, (41) becomes

o
(63)

Note that this is different from the simple shear assumption where E;{! = O. The stress tensor
and the deviatoric stress tensor are
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-(Y

3
0 0

"~ [~
0

:]
-(J

0 and ~= 0
3

r (64)

r
2(J

0 r -
3

in which Q; may vary. Again, we mention that the hoop stress is zero which is different from
the simple shear assumption that (Je # O. The constitutive equation, from eqn (27), has the
following component equations:

dB -(J
rirr +Sy d: = -3-

dB, -(J
aee-Sy dz = 3

The first two equations of (65) may be combined to yield

dBr aee - arr

dz - 2Sy

The intrinsic time is then, from eqn (26) and eqn (63), given by

Therefore,

Then, by substituting (66) in (68), we obtain

+d = d- F(z) _ (aee -arr )2
- '1 '" 2 2S

y

(65)

(66)

(67)

(68)

(69)

The" + " sign is for loading and" - " is for unloading.
We may also obtain the following components of r;/;(2) by using the same procedure as

that leads to eqns (59) and (60)

(70)
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Therefore, from (50-52) and (70), we obtain the following component equations

dcxrr = (/11 + /12) dEr- Al CX rr dz + I.} /12Er dz

dcxeo = - 2cxoz<I> - (Jil + /12) dEr- 1. 1CXoe dz - A, Ji2 Erdz

dcxzz = 2cxoz <I> - A, CXzz dz

1091

(71)

with the initial conditions 1](0) = 0, Er(O) = 0, and cxliO) = O. We again use eqn (62) for a
step by step calculation.

6. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

In this section, we compare the theoretical and experimental results. There are seven
material constants in our model: C, [3, C" Sy, /1" /12 and Al where c and [3 are used in the
hardening function fez) and describe the rate and saturation value of isotropic hardening;
C, fixes the magnitude of plastic spin; Sy is a material constant proportional to the initial
yield stress in shear (Sy = )2 Ty) ; and /1" Ji2 and AI are used in the kernel function /1(z)
which describes the evolution of back stress. These material constants are determined by
fitting the theory to the experimental stress-strain curve during loading. After they have
been determined, the constitutive equations are applied to predict experimental results of
specimens subjected to different loading conditions. Three different materials have been
investigated, 70: 30 brass, Ni-200 and AI-I 100. All shear strains reported in the experimental
results are for the outer surface of the tubular specimen.

For the 70: 30 brass material, the material constants have been determined to fit the
experimental data of Stout [reported in 1m and Atluri (1987)] for the case of simple torsion,
Fig. 1. The constants are: c = 3.1, [3 = 15.4, C I = 4.5, Sy = 90 MPa, Jil = 200 MPa, Ji2 = 50
MPa and }., = 7.2. These constants are then used in the equations for torsion with axial
stress (Je = 0 [equations in Section 5(A)] to predict behavior of the same material for two
different strain paths, i.e. monotonic and cyclic pure torsion. The strain range of the
monotonic pure torsion is from 0 to 4, whereas the specimen under cyclic pure torsional
loading is strained from °to 1.7, unstrained back to 0, and then, restrained to 2.0. The

400

300
IIIa.

::lE
.n
III
l!! 200
iii
~

III
G +Experiment.s:.
U) -Theory

100

O-+---,---,----,---y---y---y---,r---.----,r-----,
o 2 3

Shear Strain

Fig. 1. Shear stress-strain curve of 70 : 30 brass.
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Fig. 2. Monotonic and cyclic axial--shear strain curves of 70 30 brass.

results found from this theory are compared with the experimental data of Swift (1947).
Figure 2 shows results of both monotonic and cyclic pure torsion. It is seen that the theory
does predict the trend of variation for the axial strain during torsion. We note that
experiments of Swift and Stout were conducted in different laboratories and material
conditions, and the agreement demonstrated here is therefore considered as very satis
factory. The effect of C j is investigated and shown in Fig. 3 for 70: 30 brass. This figure
shows the dependence of the axial strain on C1 in the case of monotonic pure torsion. It is
seen that a suitable C j can be determined to achieve a good agreement with the experimental
results.
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z
:;;:
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l-en 20
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SHEAR STRAIN
Fig. 3. Effect of plastic spin on the axial strain for 70: 30 brass during pure torsion.
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Fig. 4. Shear stress-strain curve of Ni-200 at prestress = 0.01 MPa.
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The experimental data for Ni-200 are taken from Hart and Chang (1985). The material
constants have been determined by fitting the shear stress-strain curve (Fig. 4) which was
determined from torsion with a 0.01 MPa prestress. The constants have been determined
to be: c = 14.2, f3 = 5.5, C I = 9, Sv = 40 MPa, III = 45 MPa, 112 = 40 MPa and lei = 9.5.
Using these constants and constit~tive equations of Section 5(A), we have predicted the
axial strain associated with torsion with prestresses of 1.48, 0.01 and - 1.52 MPa. The
results, shown in Fig. 5, are quite satisfactory.

Figure 6 shows the experimental shear stress-strain curve under simple shear
conditions, obtained by White et at. (1990), for AI-I 100 material. The theoretical result of
the present theory is also shown. The material constants are c = 2.14, f3 = 4.5, C I = 4.5,
Sy = 55 MPa, III = 1.8 MPa, 112 = 0.15 MPa and ;'1 = 1.64. Wu and Xu (1989) also obtained
a shear stress-strain curve of AI-I 100, but in a smaller deformation range (12% strain).
The curve agrees with the one shown in Fig. 6. Using these constants and constitutive
equations of Section 5(A), we predicted the axial strain in the case of torsion with prestresses
of -6.9 and -20.7 MPa. The results found from this theory are (the solid and dashed
curves) compared with the experimental data of Wu and Xu (1989) and shown in Fig. 7.
Figure 8 shows the prediction (the solid and dashed curves) of the hoop and axial strains,
respectively, for the pure torsion condition (i.e. with (Ie = 0). The experimental data of
Bailey et at. (1972) are also shown in the figure. Even though the theory agrees well with
experiment in the axial strain, there are discrepancies in the hoop strain at large shear strain
level. These discrepancies may be explained by taking a closer look at the specimens and
the procedure used in the experiments of Bailey et at. (1972). The specimens used by them
had a very short gauge length of 0.125" compared to a radius of 0.75". The radius of the
relatively rigid ends of the specimen did not change, which in turn restricted the development
of hoop strain at large shear strain level. Another possible restriction to the hoop strain is
due to a plug and sleeve inserted by the authors to prevent buckling at large strain levels.
The authors thought that there was sufficient clearance to allow for any reduction in
diameter during testing. However, we believe that there was contact between the specimens
and the plug at large shear strain levels and, therefore, the reduction in diameter was
restricted. If there were no contact, then the plug would not have been needed in the
experiment. We believe that these are the reasons causing the experimental hoop strain to
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Fig. 5. Axial-shear strain curves with various axial prestresses (Ni-200).

be on the low side compared to the theoretical result. Wu et al. (l994b) conducted the same
experiments by use of extruded high purity aluminum with specimens of a much longer
gauge length (3.25") and without the plug. The outer radius of the specimens was 0.75".
The results are shown in Fig. 9. It is seen that these curves have the same trends as those
of the theoretical curves shown in Fig. 8, i.e. the hoop and axial strains at large shear strain
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Fig. 6. Shear stress-strain curves of AI-I 100.
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levels have almost the same magnitude, whereas the results of Bailey et al. (1972) show that
the hoop strain does not increase much with the axial strain at large shear strain levels.

In some published writings such as Canova et al. (1984), the rate of hoop strain is
assumed to be equal to the rate of radial strain, i.e. Sg = sn for thin-walled tubes under
tension-torsional loading conditions. This assumption is good only for the axial loading
condition. Taylor and Quinney (1932) showed that the hoop strain is not equal to the radial
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strain under combined tension-torsional loading. In this calculation, we have found that
the rate of radial strain is almost zero, i.e. the wall thickness changes very little. And, from
eqn (39), the magnitude of the hoop strain is nearly the same as that of the axial strain, in
agreement with the experimental observation. We mention that the analysis of Lowe and
Lipkin (1990) and Qian and Wu (1994), by use of polycrystal plasticity, also leads to the
same trends as predicted by our theory for the axial and hoop strains.

7. CONCLUDING REMARKS

Endochronic constitutive equations have been derived for use in the finite strain range.
This has been accomplished by incorporating the concepts ofcorotational rate, corotational
integral and plastic spin into the theory. These equations are then applied to describe
torsion of thin-walled tubes subjected to various loading conditions. It has been shown that
the oscillatory stress-strain response during monotonic shearing does not arise by use of
this set of equations. In addition, the equations successfully describe the torsional behavior
under unloading and reloading conditions. Attention has been given to the axial and the
hoop strains, and the axial effect during torsional loading. It has been shown that the hoop
strain almost has the same magnitude as the axial strain. It has also been shown that the
plastic spin has a direct influence on the axial effect during torsion.
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